Trigonometri : Aturan Sinus


Ira Wahyu Wardhani I 8 Agustus 2020 I


Pada dunia trigonometri tentu kalian tidak asing dengan sinus, cosinus, dan tangen. 

Tahukah kalian bahwa sinus memiliki aturan yang khusus dan diterapkan dalam segitiga?

Aturan yang khusus tersebut yakni Aturan Sinus

Aturan Sinus menjelaskan hubungan antara perbandingan panjang sisi yang berhadapan dengan sudut terhadap sinus sudut pada segitigaAturan ini bisa digunakan pada dua pasang sudut sisi yang saling berhadapan, di mana salah satunya tidak diketahui.

Misalnya Untuk setiap segitiga sembarang Δ ABC,

dengan  BC = a, AC = b, AB = c, dengan sudut-sudutnya

C, A dan B, maka aturan sinus yang berlaku adalah sebagai berikut.

Keterangan:

a = panjang sisi a

A = besar sudut di hadapan sisi a

b = panjang sisi b

B = besar sudut di hadapan sisi b

c = panjang sisi c

C = besar sudut di hadapan sisi c

AP ┴ BC

BQ ┴ AC

CR ┴ AB

Berdasarkan aturan sinus pada Δ ABC, perbandingan panjang sisi dengan sinus sudut yang berhadapan dengan sisi segitiga mempunyai nilai yang sama

 

·      Perhatikan segitiga ACR

Sin A = CR/b  maka CR = b sin A …(1)

·      Perhatikan segitiga BCR

Sin B = CR/a  maka CR = a sin B …. (2)

·      Perhatikan segitiga ABP

Sin B = AP/c  maka AP = c sin B … (3)

·      Perhatikan segitiga APC

Sin C = AP/b  maka AP = b sin C …(4)

 

·      Berdasarkan persamaan (1) dan (2) didapat

CR = b sin A = a sin B maka a/sin A b/sin B …(5)

·      Berdasarkan persamaan (3) dan (4) didapat

AP = c sin B = b sin C maka b/sin B c/sin C …(6)

·      Kemudian, berdasarkan persamaan (5) dan (6) diperoleh


 ≪           a/sin A = b/sin B = c/sin C         


Contoh Soal

1. Sebuah segitiga ABC memiliki panjang AC = 4 cm. 

    Jika besar ABC = 60o dan  BAC = 30o, maka tentukan panjang BC!

Pembahasan:

Diketahui :

panjang AC = 4 cm

 ABC = 60o 

BAC = 30o

Ditanya : Tentukan panjang BC ?

Jawab:

Akan dihitung panjang BC

AC/sin ABC     BC/sinBAC

4cm/sin 60       BC/sin30

4cm/½√3         BC/½

BC                = ½ × 4cm/½√3

BC                4cm/√3

BC                4/√3 cm

Jadi, panjang BC adalah 4/√3 cm

2. Bu Lesti seorang penjahit, ia mendapatkan order menjelang HUT RI untuk menjahit umbul-umbul berbentuk segitiga. Ia pun mengukur dan memotong kain hingga berbentuk segitiga yang tiap sudutnya dikodekan dengan A, B, dan C, dengan sudut A = 30º, sisi a = 6cm dan sisi b = 8cm. Berapakah besar sudut B?

Pembahasan :

Diketahui :

A = 30º

sisi a = 6 cm 

sisi b = 8cm. 

Ditanya : Berapakah besar sudut B?

Jawab:

Akan dihitung besar sudut B

sin B = (b sin A)/a  

sin B = 8/6 sin 30̊

sin B = 2/3

B = arc sin B

B = arc sin (2/3)

B = 41,8̊

Jadi, besar sudut B adalah 41,8̊ atau 

180̊ – 41,8̊ = 138,2̊


Nah, Itulah pembahasan mengenai aturan sinus

Berikut link contoh masalah matematika mengenai aturan sinus

https://youtu.be/HDSEjiLPIB8

Bagaimana ? Sudah paham kan? jika masih ada yang belum paham bisa langsung tanya di komentar ya ^^

Semoga bermanfaat ...

 

Komentar

Posting Komentar

Postingan populer dari blog ini

CERKAK BASA JAWA

Penyelesaian SPLTV Metode Eliminasi

PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU